R/plotting-functions.R
plot_covariance.Rd
Plot Covariance between predictor (components) and response (components)
plot_covariance( sigma_df, lambda_df = NULL, base_theme = theme_grey, lab_list = NULL, theme_list = NULL )
sigma_df | A data.frame generated by tidy_sigma |
---|---|
lambda_df | A data.frame generated by tidy_lambda |
base_theme | Base ggplot theme to apply |
lab_list | List of labs arguments such as x, y, title, subtitle |
theme_list | List of theme arguments to apply in the plot |
A plot of true regression coefficients for the simulated data
sobj <- bisimrel(p = 12) sigma_df <- sobj %>% cov_mat(which = "zy") %>% tidy_sigma() %>% abs_sigma() lambda_df <- sobj %>% tidy_lambda() plot_covariance( sigma_df, lambda_df, base_theme = ggplot2::theme_bw, lab_list = list( title = "Covariance between Response and Predictor Components", subtitle = "The bar represents the eigenvalues predictor covariance", y = "Absolute covariance", x = "Predictor Component", color = "Response Component" ), theme_list = list( legend.position = "bottom" ) )